

NR4

NR4C

NR7

NR7A

NRIZA

NR13

NRI3A

NR14

NR IS

NR ISA

NRI6

NRI6A

NR I7

NRIS

NRZ

3 ELECTRODE AC HEATED VALVES

NR 26

NR27

4 ELECTRODE VALVES

NR19

NR 22

	NAME	F	ILAMENT		ODE	MUTUAL	A. C. RESISTANCE	AMPLIFI-	TYPE OF FITTING	CLASS
	OF VALVE,	VOLTS	AMPERES	VOLTS	CURRENT	CONDUCT- ANCE	OHMS (ra)	FACTOR.	1,000	FILA
					(Ma)	$(g_{\mathbf{m}})$		(m)		MEN'T.
	NR4 NR4C	3.8	0.8 0.8	50 50	0.7	₹ 0.12 ₹ 0.15	58000 to 140000 30000 to 52000	7 - 17	Screw	Bright
	NR7	3.2	0.65	50	0.7	₹0.18	30000 to 52000	7 - 12 5 - 13	Screw Clip	Bright Bright
-	NR7Δ	3. 2	0.65	50	0.7	≮ 0.18	30000 to 100000	5 - 13	Clip	Bright
-	NR12A NR13	3.2	0.65	80 - 50	0.7	≮ 0. 18 ≮ 0. 18	00000 to 30000		4 pin	Bright
	NR13A	3.2	0.65	50	0.7	₹0.18	30000 to 100000	5 - 13 5 - 13	Inter Service	Bright Bright
-	NR14		0 115(max)	50	0.5 1.5	0.2	30000 to, 60000	5 13 6 8	Clip	Dull
-	NR15 NR15A	3.6	0.12 (max) 0.085,0.105	50	0 7-2.5	0.7	20000 (max)	12 - 16	4 pin	Dull
1	NR16	3.6	0.005 (max)	50	7 · · 1 5	0.0	6000 to 12000 4000 (max)	1.2 - 16	4 pin	Dull Dull
	NR16A		0.207-,0.253		8	1.3-2.6	2000 to 4000	3 3.5 - 5.5	4 pin 4 pin	Dull
-	NR17	3.6	0.115(max)	50	0.5-1.5	0,2	30000 to, 60000	6 - 8	4 pin	Dull
-	NR18 NR26	3.0	0.22 (max)	50	_ ૦ ૄ3	0-26	700000 (wax)	72	Miniature Clip	Dull
	WW50	4.0	1	200	7	18.3.2	5000 to 8000	12₁ ⊶ 18	·5 pin]	Indir-
	NR27	40	1	200	15	2.5-4.5	1850 to 3850	7.5-11.5	5 pin	ectly heated
-	i	l					· 1		-	cath-
	NR28	20	0.2	200	10	1.2-2.0	3500 to 6000	6 - 8	4 pin	Dull

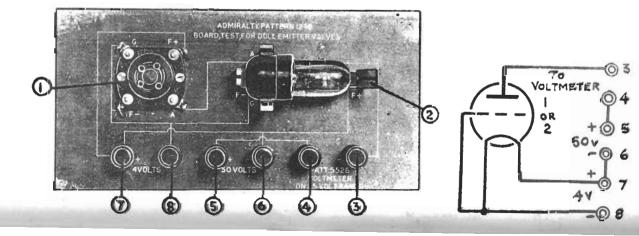
NOTE - NR7A is gettered, NR7 is not.

4 ELECTRODE (DULL ENITTER).

NAME	FILAMENT		ANODE .		MUTUAL	A. C. RESISTANCE	AMPLIFI-	TYPE OF FITTING	SCREEN
VALVE.	VOLTS	AMPERES	VOLTS	CURRENT (Ma)	CONDUCT ANCE, (g _m)	OHMS (x_a)	CATION FACTOR.		VOLTS.
NR19 NR22	3 6 3 6	0 0 3 0 11	100	3	0.35 0.6	300000 300000	70 260	Double-ended 4 pin with Anode	75 8c
NR23	3.6	C.07-0:11	200	2	0.6-1.8	167000 - 360 000	130-360	terminal. 4 pin with Anode terminal.	80

TEST BOARD FOR DULL EMITTER VALVES (PATTERN 1248).

This Test Board is supplied to enable gradual failure of a valve due to loss of emission to be observed. (There are three known causes of loss of emission (a) Excessive filament volts, (b) Excessive anode volts (c) Continuous running on too low a filament voltage). There are two fittings, one for four pin valves (1) and one for clip in valves (3). The voltmeter is a pattern 5526 used on the 25 volt range as a milliammeter connected to terminals (3) and (4). The 4 volt and 50 volt supplies are from the ordinary receiving batteries via terminals (7)(8) and (5)(6) respectively. With this arrangement the emission of each valve can be measured under standard conditions — i.e. constant supply of 4 volts L.T., 50 volts H.T., and grid connected to negative filament. In the case of screen grid valves NR22 and NR23 the screen grid is used as the anode, and the anode is left disconnected. The following table gives the minimum values of the voltmeter reading for various valves when the full scale reading is 25 volts:—


VALVE	VOLTMETER READING.
NR14 NR17 NR15 NR15A NR16 NR16 NR22 NR23	1 1.4 1.5 11.0 12.0 1.75

ALLOWANCE OF RECEIVING VALVES.

The number of receiving valves allowed to a ship is based on the total number of receiving valve sockets in a ship. Bright Emitter first 15 bookets 5 valves per socket.

remainder 3 valves per socket.

Dull Emitter first if sockets 3 valves per socket. remainder 2 valves per socket.

Date of design: -

1933

This board is supplied to enable the ship's staff to carry out periodical tests on receiving valves in order to detect loss of emission. The circuit diagram is shown in Figure a. Deterioration in valves takes the form of increase in A.C. resistance and decrease in mutual conductance.

With this board the mutual conquetance and A.C. resistance values for triodes, and the mutual conductance values for screen grid valves can be measured.

The hoard is fitted with a holder for valves of the NR14 type (17) and a standard 5-pin valve holder (16). There is also a terminal (18) for connection to the anodes of screen grid valves.

The 100 volt (1) and 4 colt (2)(3) hattery supplies should be connected to the hattery terminals through the rack switch and the condition of the hatteries can be checked by means of the dual range voltmeter (3).

To measure filament voltage the voltmeter switch (7) must be in the filament position (14) and for anode voltage the switch must be in the anode position (13). The main switch (15) must be in any of the "ON" positions

The anode voltage can be varied by means of a potentiometer (4) in series with a fixed resistance (8) between H.T. positive and L.T. negative and is equal to the supply voltage when the potentiometer is set to its maximum position.

When the main switch (15) is in position Triode 1 or 2, the variable H.T. potential is applied to the anode terminals of the valve holders (16) and (17). When the switch is in position SGV 1 or 2 the variable potential is applied only to the SGV anode terminal (18) and the valve holders anode terminals are connected to the junction of the potentiameter (4) and the fixed resistance (5).

The anode current of the valve under test is measured by means of the dual range milli-ammeter (9). The switch (11) has two positions (10) and (12) for readings of 0 - 100 milliamps and 0 - 10 milliamps.

A fixed potentiometer (19) is connected across the L.T. supply for applying grid bias to the grid terminals.

There are two tappings (20) and (21) on the potentiometer - one to be used when the L_{\bullet} Ts supply is from a 4-volt cattery, and the other in the case of 2 volt supply.

When the main switch (15) is moved from position Triode 1 to Triode 2 or from SSV1 to SGV2, the grid rias is altered from 0 to +0.5 volts.

Triodes with directly heated Filaments

Method of test - Measurement of A C resistance

To carry out the tests, the main switch is to be put to position Triode 1 and the anode current is to be measured first with an anode voltage of 70 volts and then with an anode voltage of 80 volts. The difference between these readings should be greater than the minimum difference given for each type of valve.

Valve type	Minimum difference of anode currents.
NR14	O. 15 milliamp.
NR17	0 . 1 5
NR15	O. 4 "
NR 15A	O _c 77 "
NR 16	20 "
NE 16A	20 "

Triodes with indirectly heated filaments.

Method of test - Measurement of mutual conductance.

To carry out this test, the anode voltage should be 96 volts and the anode current is to be measured first with the main switch in position Triode 1 and then with the switch in position Triode 2. The difference between the two readings should be greater than the minimum difference for each type of valve.

Valve type	Minimum difference of anode currents
NR26	0.6 milliamp
NR27	1. 0
NR31	0.8

Screen Grid Valves

Method of test - Measurement or mutual conductance.

To carry out this test, the anode of the valve under test is to be connected to the SGV anode terminal (18) and the H.T. potentiometer (4) set to give an H.T. voltage of 96 volts. The anode current is measured first with the switch in position SGV1 and then with the switch in position SGV2. The difference between the two readings should be greater than the minimum difference for each type of valve.

Valve type.

NR22

NR23

O. 25 milliamp.

O. 25

In all cases the filament voltage is not to be less than 3.6 volts.

VALVE TEST BOARD .

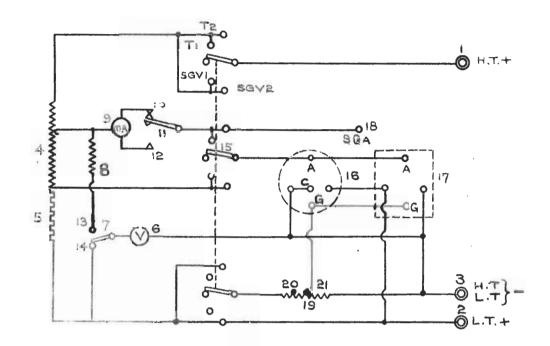
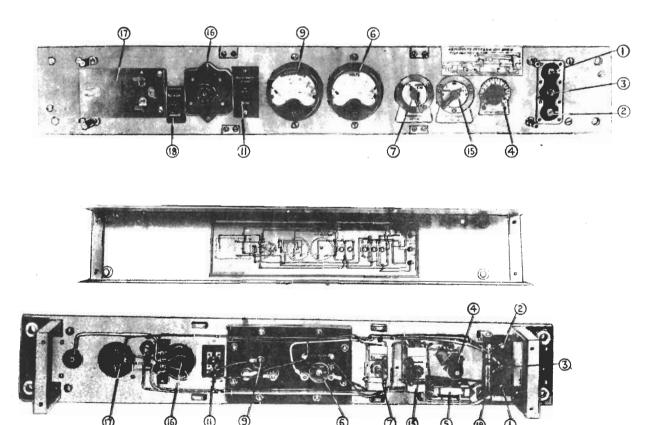



FIG. a.

